Modeling and Simulation for Qualification of Additive Manufacturing

Albert C. To, Ph.D.
William Kepler Whiteford Professor

with contributions from Qian Chen, Hai Tran, Wen Dong, Seth Strayer, Dr. Florian Dugast, Dr. Alaa Olleak, Dr. Lin Cheng, Dr. Xuan Liang, Dr. Santanu Paul

Ansys Additive Manufacturing Research Laboratory
Department of Mechanical Engineering and Materials Science
University of Pittsburgh

GIF AMME Workshop on Advanced Manufacturing
November 8, 2021
Ansys Additive Manufacturing Research Lab (AMRL)

- Optomec LENS 450
- EOS M290 DMLS
- ExOne Innovent
- Mitsubishi EDM MV2400-S Wire EDM

- Established in 2015
- 2,000 sq ft lab space
Build Failures - Laser Powder Bed Fusion
Modified Inherent Strain Method

Detailed model
- meso-scale (~0.1mm)
- sequentially coupled thermomechanical analysis

Inherent strain model
- macro-scale (~100mm)
- Quasi-static mechanical analysis

Extract inherent strains (element by element)
\[\varepsilon^{In} = \varepsilon^{Plastic}_{ti} + (\varepsilon^{Elastic}_{ti} - \varepsilon^{Elastic}_{ts}) \]

Apply inherent strains (layer-by-layer)

�� Reduce error in deformation from 40% to 10% compared to original inherent strain model

Modified Inherent Strain Method

Bearing Bracket Support (Re)-Design

- Combine global-local analysis, J-integral, and modified inherent strain method to predict interfacial cracking between solid component and support structure

Build Orientation Optimization

- Combine particle swarm optimization and modified inherent strain method to efficiently optimize build orientation for residual stress

Optimal Orientation

- Reduce maximum residual stress by 40-50%
- No cracking!

Support Structure Optimization

- Combine modified inherent strain method and topology optimization to design support structure

Un-optimized support

Optimized support

- Reduce maximum residual stress by 30-40%
Fast Grain Growth Model

- Assumes epitaxial columnar dendrite is the dominant growth mechanism
- Each epitaxial columnar dendrite is modeled by a line segment
- Each dendrite is grown according to the local thermal gradient

Melt Pool Variation and Defect Formation

5 cm height

1 cm height

Pre-deposition temperature profile along building height
Melt Pool and Defect Prediction

- Mesoscale computational fluid dynamics to model the heat transfer and fluid flow
- Predict the melt pool morphology and anticipated defects

Melt pool geometry

Keyhole pore generation
Effect of Preheating Temperature

Keyhole regime ($P = 250$ W and $V = 0.5$ m/s)

Keyhole Pore Generation

For melt pool in keyhole regime ($P = 250$ W, $V = 0.5$ m/s):
- Increasing the preheating temperature leads to deep melt pool
- Probability of porosity occurrence is increased at higher preheating temperature

Process Window (P-V Map)

Cunningham et al. (2016, 2017) JOM
GPU-based AM Process Simulator

Key Features:
- Based on *voxel mesh* and *matrix-free finite element formulation*
- Runs on a $10-30k$ workstation but with supercomputer performance
- Handles highly complex geometry
- **300 times faster** running on 1 GPU than running on 1 CPU core

Layer-by-layer simulation of the “UTEP QTA block” on multi-GPUs

<table>
<thead>
<tr>
<th></th>
<th>Simulation time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GPU</td>
<td>17h</td>
<td>-</td>
</tr>
<tr>
<td>2 GPU</td>
<td>10h 51 min</td>
<td>1.57</td>
</tr>
<tr>
<td>3 GPU</td>
<td>8h 50 min</td>
<td>1.92</td>
</tr>
<tr>
<td>4 GPU</td>
<td>7h 40 min</td>
<td>2.22</td>
</tr>
<tr>
<td>Actual build time</td>
<td>14 hours</td>
<td>-</td>
</tr>
</tbody>
</table>

Physical domain: 41x41x41 mm³
Number of nodes: 206x206x206
Element resolution in x and y direction: 200 microns
Layer thickness: 30 microns
Material properties: Ti64 (temperature dependent)

Multiscale Process Simulation

- Layerwise simulation is fast and can be used to detect “hot spots”
- Scanwise simulation is time-consuming and should be restricted to small millimeter-scale region
- Developing a global-local process simulation to simulate thermal history, melt pool geometry, and microstructure including porous defects
Challenges and Opportunities

• Predicting detailed temperature history and microstructure/property everywhere in a part
 • Phase field and cellular automaton limited to 1-mm region
 • Property prediction beyond static strength is challenging, and experimental data is limited

• Capturing melt pool variability
 • Laser diameter dependency on location
 • Spatter shadowing in laser path
 • Laser power/focus varies over time and differ between machines

• Predicting porosity in the “allowable process window” within a part
 • Porosity caused by spattering difficult to predict

• Data curation, storage, and mining
 • In-situ monitoring, ex-situ characterization, simulations
 • Many terabytes of data
Thank you