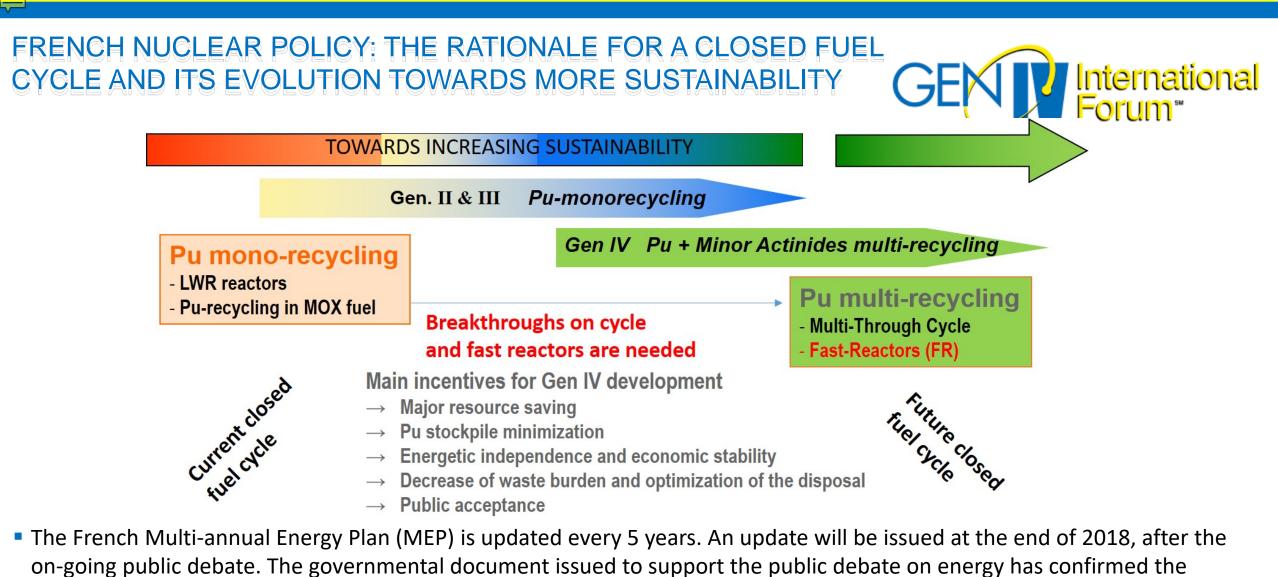
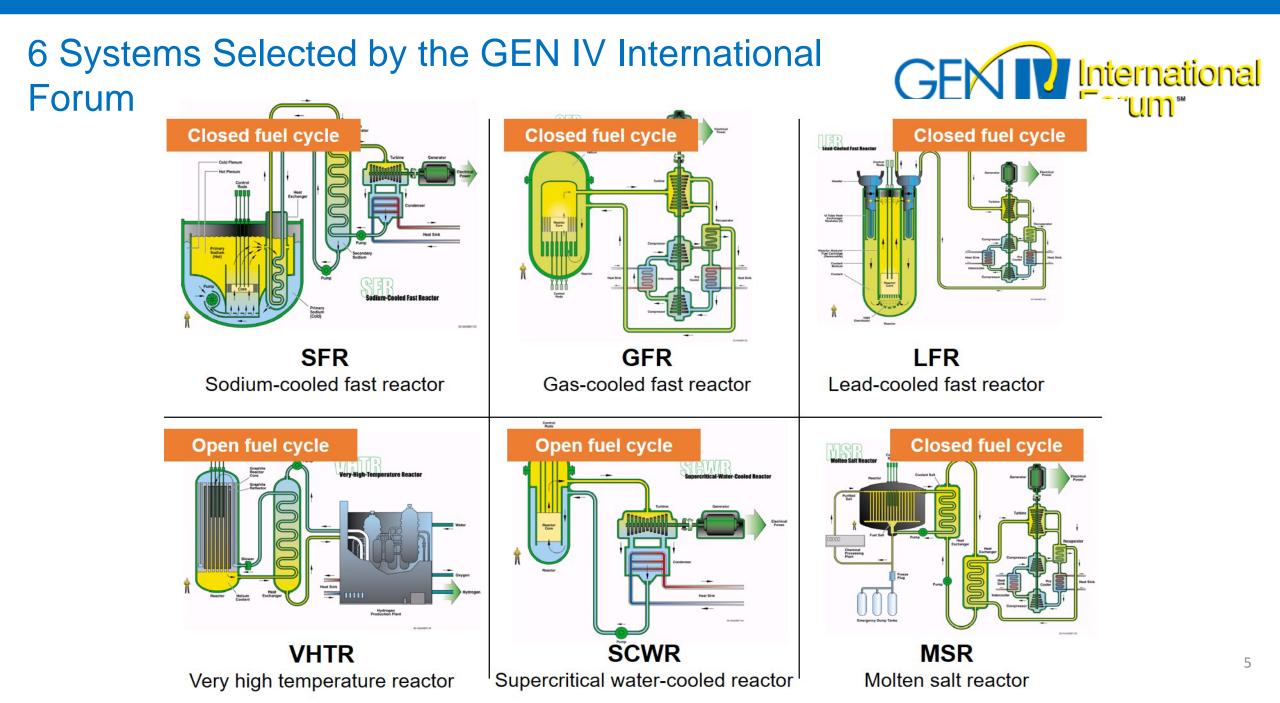


ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018

Meet the presenter


Mr. Gilles Rodriguez is a senior expert engineer at the CEA/CADARACHE (French Atomic Energy Commission/Cadarache center) and has been in the position of deputy head of the ASTRID Project team since 2016. He graduated from the University of Lyon, France in 1990 with an engineering degree in Chemistry and earned a Master of Science in process engineering from the Polytechnic University of Toulouse, France, in 1991. His areas of expertise include fast reactor technology, liquid metal processes, and process engineering. From 2007 to 2013, he was Project Leader of sodium technology and components, within the CEA SFR project organization. In 2013, Mr. Rodriguez joined the CEA project on Sodium Fast Reactor: ASTRID (ASTRID) for Advanced Sodium Technological Reactor for Industrial Demonstration), first as responsible of the ASTRID Nuclear Island.


Outline

- French nuclear policy and its position regarding the several GENIV systems and related coolants
- The advantages and challenges of the SFR concept
- Overview of the ASTRID Program and its related design (main achievements)
- The lessons learned

- closed fuel cycle strategy, as it allows for Pu management and ensures sustainability of nuclear energy.
- Reference of the French roadmap is based on the reprocessing of oxide fuel (hydrometallurgy) and the use of Fast Reactors. Priority is given to Sodium-cooled Fast Reactors (most mature technology). Active survey is performed on other technologies through collaborations.

6 Systems Studied Under the Frame of the GEN IV International Forum

GIF systems	Canada	China	France	Japan	South Korea	Russia	Switzer land	US	EU
SFR (SA) <i>Fast</i>		CEFR, CFR -600, CFR -1200	ASTRID (CEA)	JSFR	PGSFR	BN-800, 1200, MBIR		(PRISM), AFR100 TWR (Torre Dower,)	ESNII/ ESFR
VHTR (SA) Thermal		HTR -10, HTR -PM	Materials, Hydrogen technology	HTTR	NHDD (H ₂ prod .)			(TerraPower) NGNP, Xe -100	NC2I
GFR (SA) <i>Fast</i>			ALLEGRO (CEA)					EM ² (GA)	ESNII/ ALLEGRO
SCWR (SA) Fast/Thermal	Pressure - tube SCWR	CSR -1000		SCR2000					(HPLWR), NUGENIA/ SCWR -FQT
LFR (MoU) Fast		CLEAR				BREST - OD - 300 SVBR - 100		SSTAR	ESNII/ ALFRED, MYRRHA
MSR (MoU) Fast/thermal		TMSR (SINAP)	MSFR (CNRS)			MOSART		MCFR (TerraPower) FHR	SAMOFAR
Situation - Septembre 2016 Active contribution Limited contribution Observer									

CEA Analysis of Different Coolant Technologies on Gen IV Compatible with Fast Neutrons

- Sodium is a consensus
- ✓ High conductivity
- ✓ Liquid from 98°C to 883°C (at 1 bar)
- ✓ Low viscosity
- Compatible with large variety of steels
- ✓ Industrial fluid
 ✓ Low cost
 But reactive with air and
 water, and opaque
 Need a 2^{ary} circuit

- → Lead is a variant
- No reactivity with air and water
- ✓ Good coolant

But corrosive, toxic, very dense, opaque (and solid...), high temperature for maintenance (400°C), density (pumping effort, seismic behavior), risk of vapor explosion in primary circuit (secondary circuit)

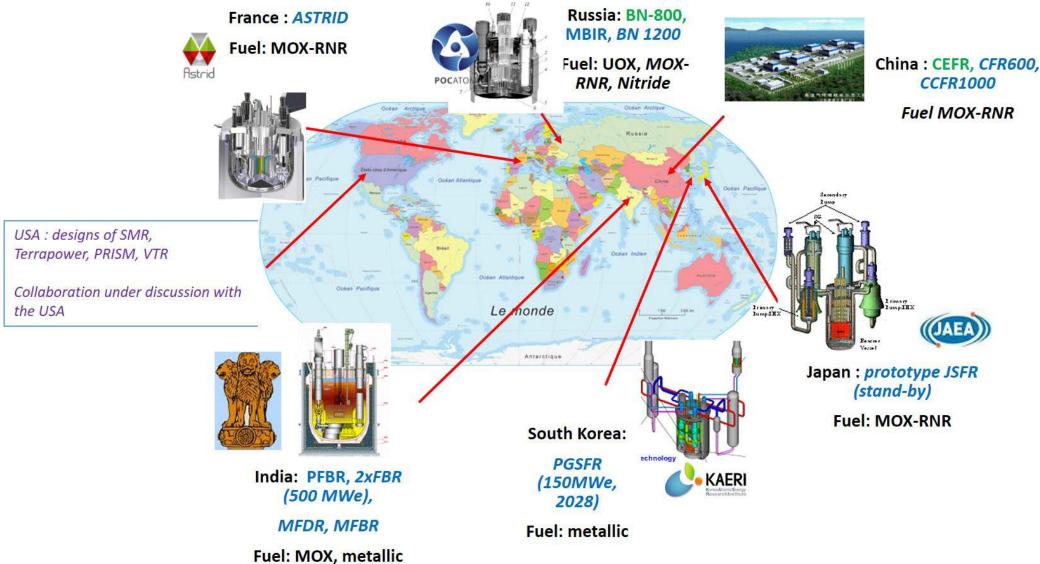
International

Forum^{**}

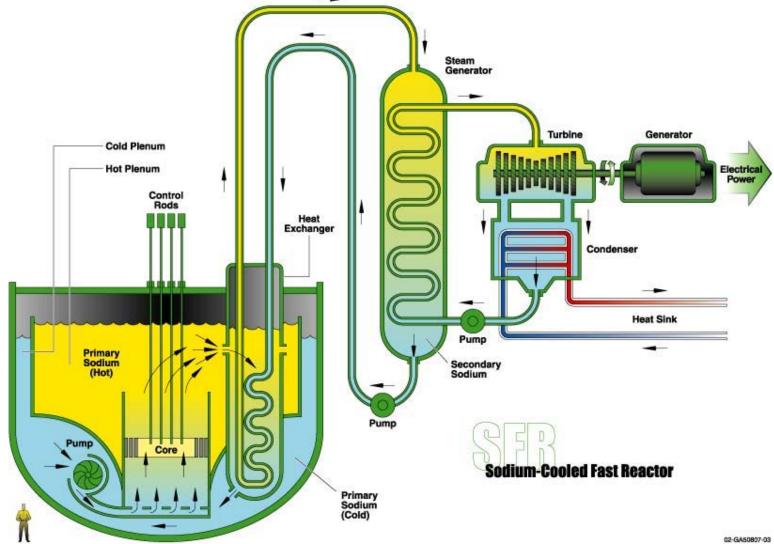
- ✓ No temperature constraints
- ✓ No phase change
- ✓ Inert
- ✓ Transparent

But low density, high pressure => challenge for a DHR architecture with passive systems Helium is not such an abundant material on earth

The French Gen IV Program


- French nuclear policy towards a more sustainable nuclear energy ⇒ it requires a cycle based on fast neutrons reactor
- Possibility for a deployment of commercial fast neutrons reactors in the second part of the century ⇒ sodium cooled fast reactor based on a maturity level analysis
 - About 450 years of operation in the world with SFR
 - No implementation of Lead FR, Fast MSR, GFR
- French Fast Reactor program:
 - Priority is given to SFR (reactor and cycle) via the ASTRID project → ASTRID will help to validate breakthroughs on cycle and SFR
 - Active survey on other GenIV fast and thermal neutrons systems through
 - Contribution to projects from EURATOM/H2020, IAEA, OECD/NEA
 - Contribution to GenIV International Forum (systems, working group, task forces...)
 - Specific cooperation frames (for GFR associate member of V4G4, and for MSR cooperation with CNRS)

Fast Reactors Operational data (2018)					
Reactor (Country)	Thermal Power	First Criticality	Final Shutdown	Operationa period (years)	
EBR-I (USA)	1,4	1951	1963	12	
BR-5/BR-10 (Russia)	8	1958	2002	44	
DFR (UK)	60	1959	1977	18	
EBR-II (USA)	62,5	1961	1991	30	
EFFBR (USA)	200	1963	1972	9	
Rapsodie (France)	40	1967	1983	16	
BOR-60 (Russia)	55	1968		50	
SEFOR (USA)	20	1969	1972	3	
BN-350 (Kazakhstan)	750	1972	1999	27	
Phenix (France)	563	1973	2009	36	
PFR (UK)	650	1974	1994	20	
JOYO (Japan)	50-75/100	1977		41	
KNK-II (Germany)	58	1977	1991	14	
FFTF (USA)	400	1980	1993	13	
BN-600 (Russia)	1470	1980		38	
SuperPhenix (France)	3000	1985	1997	12	
FBTR (India)	40	1985		33	
MONJU (Japan)	714	1994	2016	22	
BN-800 (Russia)	2000	2014		4	
CEFR (China)	65	2010		8	
PFBR (India)	1250	Under commissioning			
Total all fast reactors				450	


Projects of SFRs Worldwide

SFR Design (Basic Principle)

10

Favorable Features of SFR

- The whole primary circuit is contained is the main vessel, including the core, the intermediate heat exchangers and the primary pumps.
- The primary system is not pressurized.
- The intermediate (or secondary) system transfers the energy to steam generators, thus providing for an extra containment between the primary circuit and the environment.
- Large boiling margin of sodium (>300 K)
- The large quantity of primary coolant provides for a high thermal inertia in case of loss of main heat sink.
- Good natural convection and circulation features allow to design passive, diversified decay heat removal systems.
- Power control by single rod position, no xenon effect, no need of soluble neutron poison.
- Collective dose on a pool type SFR is very low compared to PWR.

Improvements in SFR Design

System (nitrogen in place

of steam/water), that will

the sodium-water reaction

allow to physically avoid

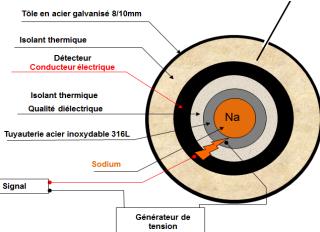
Improvements in SFR Design						
Feedback of previous SFRs	R&D directions	ASTRID Orientations	EX International Forum [®]			
Core Sodium voiding reactivity → Safety	Optimization of core design to improve natural behavior during abnormal transients. Exploration of heterogeneous cores	CFV core: innovative approach, <u>negative</u> overall <u>sodium voiding</u> <u>reactivity</u> Better natural behavior of the core, for instance in case of loss of flow (e.g. due to loss of supply power). Avoid neutronic power excursion				
Sodium-Water interaction Safety - Availability	Robust steam generators 2 options are studied Gas Power Conversion	Limitation of total released energy in case of sodium-water interaction, and integrity of the envelop of the steam generator and the secondary loop. Design studies conducted by				

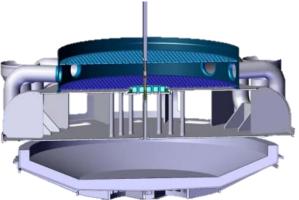
General Electrics. No show

exchanges conducted with

Design studies on sodium-gas

stopper.


FRAMATOME.


12

Improvements in SFR Design

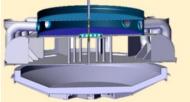
Feedback of previous SFRs	R&D directions	ASTRID Orientations	
Sodium fire → Safety	Innovative Sodium leak detection systems R&D on Sodium aerosols	Improving detection (Patent of detection system integrated in the heat insulator) Close containment (inert gas + restriction of available oxygen)	
Severe accidents → Safety	Core catcher Research on corium and sodium-corium interaction	Core catcher Transfer tubes	
Decay heat removal → Safety	Reactor vessel auxiliary cooling system (scaling rules)	Combination of proved Decay Heat Removal systems and Vessel Natural Air draft cooling with the objective to practically eliminate the long term loss of the function	
In-Service Inspection and Repair → Safety – Availability	ISI&R taken into account from the design stage and Simplification of primary system design Under-sodium viewing: improvement of Signal processing and sensor technologies (ultrasound at high temperature, fission chambers, Optical Fibers,) Remote handling for inspection or repair		

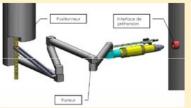
The ASTRID Program

(Advanced Sodium Technological Reactor for Industrial Demonstration)

- ASTRID is a technological demonstrator and is not a First of a Kind of a commercial reactor.
- Based on the feedback experiences of past Sodium-cooled Fast Reactors, ASTRID has the objective to demonstrate at a scale allowing the industrial extrapolation, the relevancy and performances of innovations, in particular in the fields of safety and operability.
- ASTRID with the related R&D facilities will allow:
 - to test and qualify innovative safety design options towards the commercial reactor,
 - to qualify different fuels (transmutation, plutonium burner, ...),
 - to obtain the necessary data to justify a useful lifetime of 60 years for future SFR,
 - to confirm performances of innovative components and systems in order to optimize the design of future commercial reactors from a technical and economical points of view,
 - to establish a reference for the SFR cost assessment (building and operation).

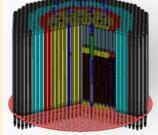
The ASTRID Program


(Advanced Sodium Technological Reactor for Industrial Demonstration)



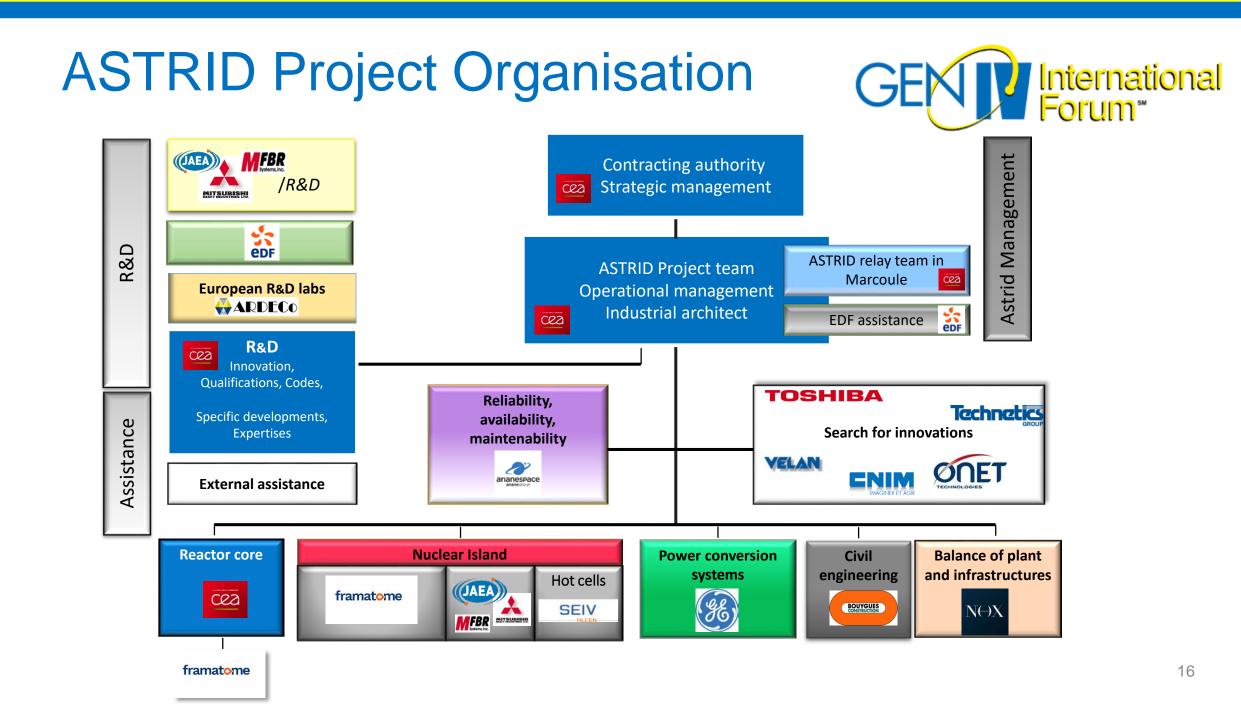
The technology of ASTRID allows to have a very resilient design to external events (earthquake, flooding, loss of power, airplane crash...)

> Based on the feedback experiences of past Sodiumcooled Fast Reactors operated in the world, examples


of innovations

Mitigation devices (core catcher...)

Larger in-service inspection capabilities



Core with an improved intrinsic behavior

an Gas power rinsic conversion system r

CEA Experimental Platforms

In addition to available foreign experimental platform, CEA is carrying out particular investments

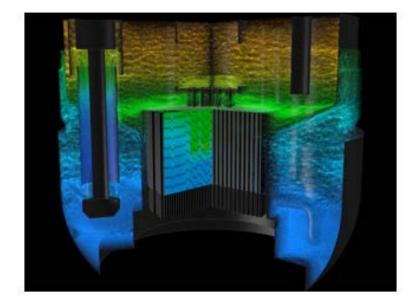
Needs	CEA Platform		
Neutronic qualification of innovative core	MASURCA : under reconsideration / International reactors		
Analytical water tests, TH code validation (gas entrainment, hot pool flows), Component qualification (ISIR)	GISEH : Acronym for "Group Installations in Surrogate coolant for Hydraulics, thermal- hydraulics, mechanics, fluid-structure interaction" In operation		
Small Na loop (<3 m ³ Na) TH code validation and Component and technological qualification (under Na viewing)	PAPIRUS : Acronym for "Parc of small Installation of R&d for Utilization of Sodium Corrosion test, heat exchanger test, instrumentation In operation		
Large Na loop (<100 m ³ Na) Component qualification (close to scale 1 prototypes)	CHEOPS : → Sodium-gas heat exchanger or steam generator mock-up, subassembly thermal-hydraulics, Control rods, passive shutdown system qualification, sodium fuel handling, Under reconsideration / Jp platform		
Severe Accidents corium behaviour, Qualification of mitigation device (core catcher)	PLINIUS-2 : experimental studies of corium-sodium-interaction and core catcher (100-500 kg of UO2), analytical test Under design. Decision to build		

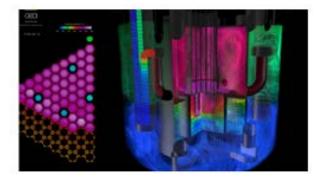
Use of Digital in ASTRID Project...

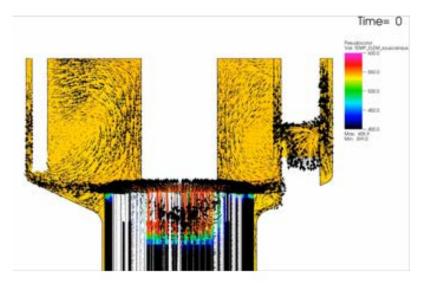
Design and operation

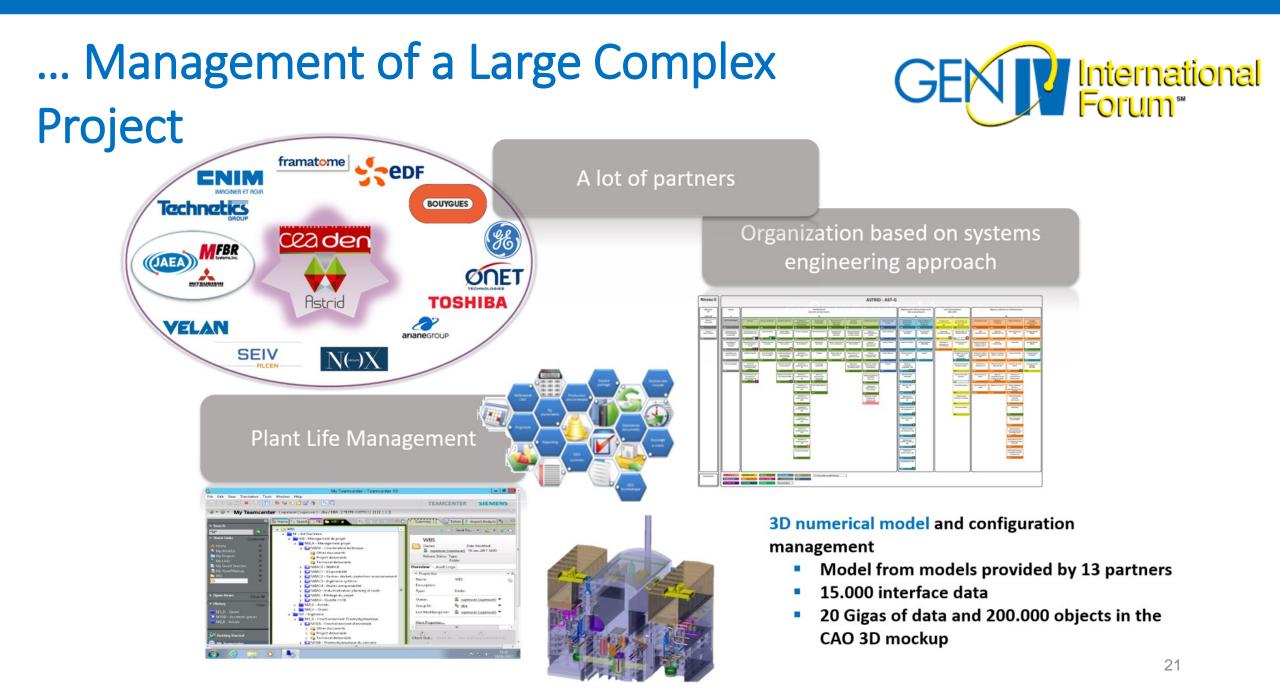
of innovative systems

Assessment of performances


> Management of a large & complex project (13 ind. partners, up to over 500 participants)


... Model Complex Phenomena to Consolidate Demonstrations

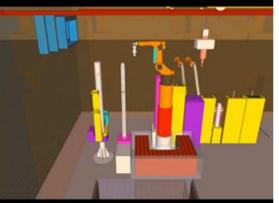



- Numerical simulation is required to support design studies and safety analysis
- Multi-physics and multiscale modelling

Modelling of an accidental scenario with loss of the primary pump of ASTRID reactor, without control rod protection (ULOF). Natural convection is leading to a stabilised sodium flow in te core allowing core assemblies cooling and avoiding a severe accident situation (no core or fuel melting). CEA/Saclay studies

Advantages From the Use of Virtual Reality

Promising deployment of the the use of Virtual Reality



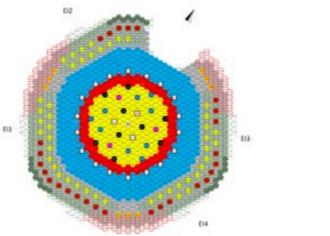
Areva NP, Projet Reality Un système de réalité virtuelle pour l'ingénierie des réacteurs nucléaires

#VitrinesAl

Example of a kinematic of handling processes inside the ASTRID hot cell

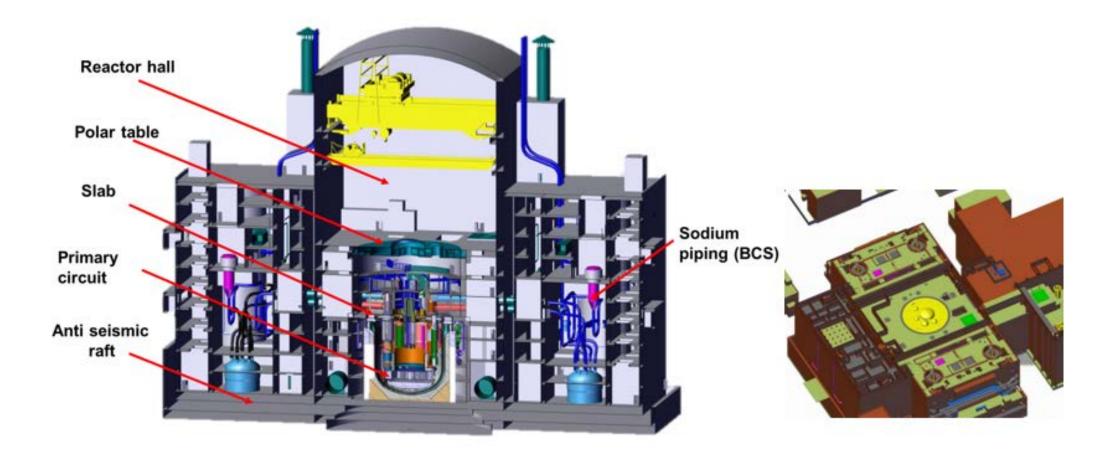
Main Achievements for 2015, and After...

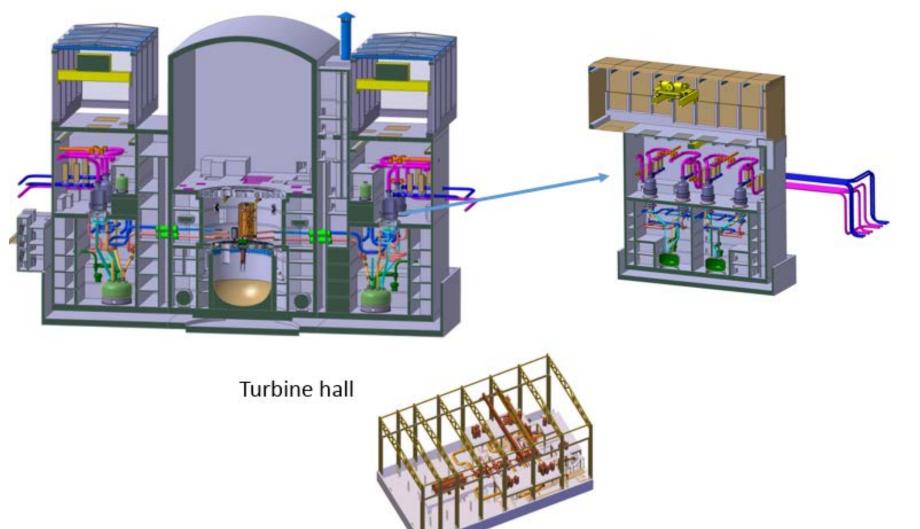
- A synthesis file was sent to the government mid 2015 :
 - Strategy leading to the choice of Gen IV sodium cooled fast reactor and closed fuel cycle.
- Synthesis file summarizing the conceptual design phase (2010-2015) provided in December 2015
 - Scope statement, with technological choices (including conversion system), issued from Conceptual Design.
 - Workplan for Basic Design, with associated R&D infrastructures.
- Authorization at the end of 2015 from the government to proceed until the end of 2019 (Basic design phase).



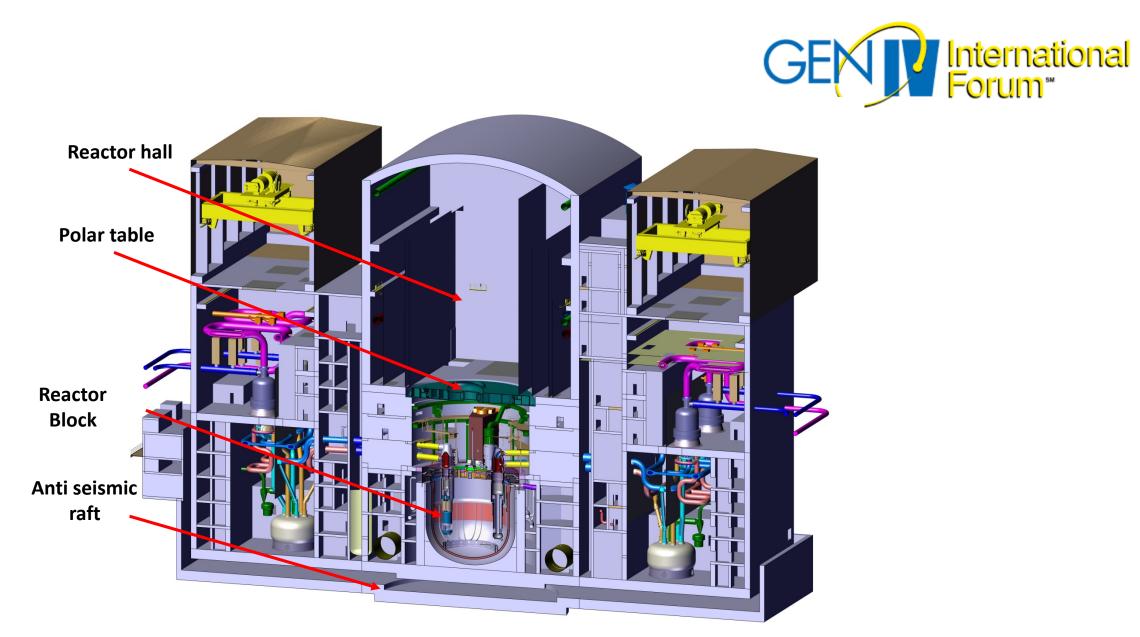
ASTRID Main Technical Choices

- 1500 thMW ~600 eMW
- Pool type reactor
- With an intermediate sodium circuit
- CFV core (low sodium void worth)
- Oxide fuel UO2-PuO2
- Preliminary strategy for severe accidents (internal core catcher, no large mechanical energy release, ...)
- Redundant and diversified decay heat removal systems
- Fuel handling in sodium + combination of internal storage and small external storage (to increase of the availability rate)

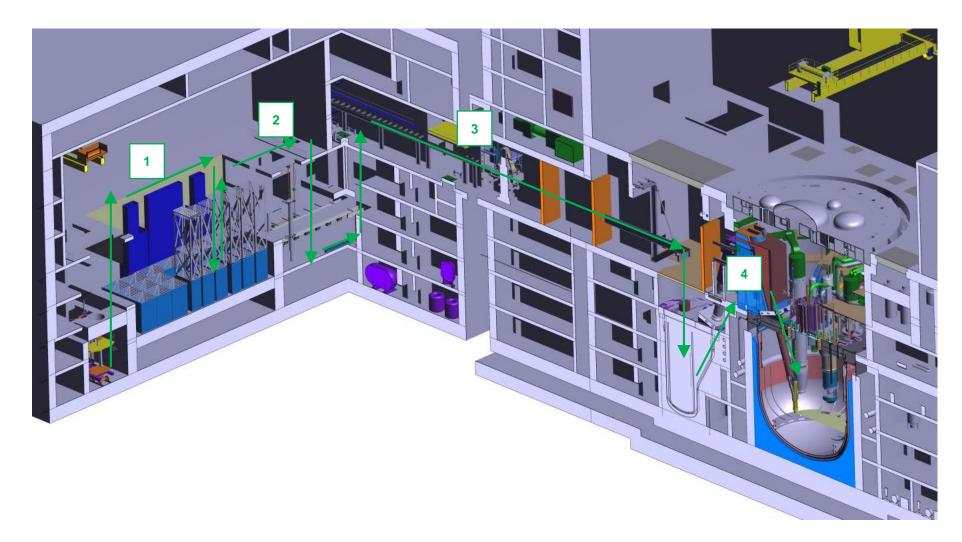




Option with Steam Water Power Conversion System

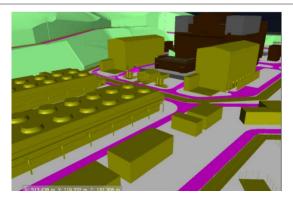


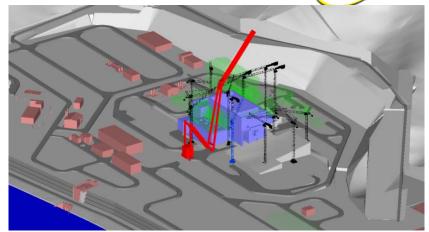
Option with Gas Power Conversion System



International Forum[®]

ASTRID Design: the Fuel Handling Route

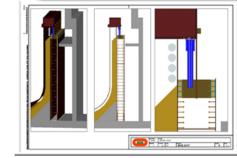


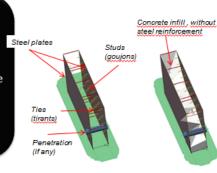


ASTRID Design: BOP & Constructibility GEN International

Progress on constructibility operation and Balance of Plant

Steel-concrete structure are used for reactor pit and for roof of the reactor building.


Reactor pit


Roof of the reactor building

Gain on planning and consequently on the global cost

Higher mechanical strength

Most of abrication of SC modules can be performed in manufactory

All information contained in this document are to PAGE 72 r 19th, 2017 be considered as Confidential and CEA property

ASTRID - Balance Of Plant

Lessons Learned

- Nuclear energy is a well proven source of large baseload electricity, with no GHG emissions. It
 will remain one of the pillars of the future French low carbon energy mix.
- The closed fuel cycle associated with FNR will lead to drastic improvement in U resources management, and important reduction in footprint and radiotoxicity of final wastes.
- French program on Generation IV is based on:
 - ASTRID program
 - Basic design phase on-going (2016-2019)
 - Schedule and organization for next phases are under preparation with French government and industrial partners
 - One option could be to review the power of the demonstration reactor. In that option, a large part of works performed from 2010 will be reused (design processes, methodologies (V&V&Q for instance), new generation numerical tools, PLM, lot of innovative design options (maturity level is known...). Efficiency for next works will then be improved and current on-going R&D program is mostly relevant.
 - An active survey on other GenIV fast and thermal neutrons system

Lessons Learned

- SFR is a mature technology because many SFR reactors built from the 50's to the 70's were then operated. But the gap to achieve a GenIV concept is significant because GenIV is requesting improvements mainly in safety, operational and economics aspects; and it is impacting the related design.
- Even if mature, the SFR technology is not obvious and in that field knowledge preservation and transmission to the coming young generation is also a key challenge if you want to keep this key technology available for decades. Thus the use of sodium as coolant – as for the other liquid metal or Helium coolants – needs courses, practice and skills.
- Innovation is the way to design new reactors. It needs to get a close relationships between industry and design teams in one hand and R&D teams on the other hand. The role of the ASTRID Team project is to make them run together.
- SFR reactor design cannot be achieved without international collaboration, mainly to mutualize technological platforms and infrastructures. It is a win-win cost savings approach

Thank you for your attention

Upcoming Webinars

22 August 2018 BREST-300 Lead-Cooled Fast Reactor

26 September 2018 Advanced Lead Fast reactor European Demonstrator – ALFRED Project

24 October 2018 Safety of Gen IV Reactors

Dr. Valery Rachkov, IPPE, Russia

Dr. Alessandro Alemberti, Ansaldo Nucleare, Italy

Dr. Luca Ammirabile, EU