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Overview of Presentation

1) MSR Overview (High Level)
2) Waste types from MSRs
3) Off-Gas Treatment and Monitoring Examples
4) Waste Form Examples
5) Other Considerations
6) Summary and Conclusions
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MSR OVERVIEW
(HIGH LEVEL)
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Examples of Salt Compositions 
for Two-Salt Concepts

• Types
– Burner reactors vs breeder reactors
– Thermal spectrum vs fast spectrum

• Salt compositions
– Fluorides or chlorides are most often 

discussed but other options exist

• Common abbreviations you might 
see in the literature
– FLiBe = 7LiF-BeF2

– FLiNaK = LiF-NaF-KF

7
Courtesy Ted Besmann, MST TWG meeting 21 January 2022
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MSR Salt Processing
• Fluorination/chlorination
• UF6 purification/reduction
• Vacuum distillation
• Reductive extraction (Pa/Bi)
• Hydrofluorination
• Metal transfer process
• Electrolytic oxidation/reduction
• Oxide precipitation
• Selective crystallization
• Electrochemical separations

8

• Prepare fuel salt
• Separate Pa-233
• Remove fission products
• Remove corrosion products
• Recycle Cl-37
• Recycle Li-7
• Reduce waste volume
• Promote waste form production

Fredrickson et al. 2018, Molten Salt Reactor Salt Processing –
Technology Status, INL/EXT-18-51033, 
https://www.osti.gov/biblio/1484689-molten-salt-reactor-salt-
processing-technology-status

https://www.osti.gov/biblio/1484689-molten-salt-reactor-salt-processing-technology-status
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WASTE TYPES FROM MSRs
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Questions that Require Answers

• What streams should be considered?
• What do we know about the streams?

– Do we know enough to determine treatment route?
– Any challenges?

• Are there disposition pathways?
– Restrictions on stream management (e.g., storage, treatment, packaging, disposal environment)?

• How would effluents be treated and disposed?
• Which streams require research?

– Determine or estimate characteristics
– Develop method or treatment of waste form
– Identify potential restrictions or trade-offs with salt chemistry and processes
– Generate data for MSR process models

10



GEN IV International Forum

Some of our Work Aimed to 
Help in These Areas
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Source: https://info.ornl.gov/sites/publications/Files/Pub114284.pdf

Source: https://pubs.acs.org/doi/10.1021/acs.iecr.0c01357?ref=pdf

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

Source: https://doi.org/10.1080/09506608.2020.1801229

https://info.ornl.gov/sites/publications/Files/Pub114284.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.0c01357?ref=pdf
https://doi.org/10.1016/j.nucengdes.2019.02.002
https://doi.org/10.1080/09506608.2020.1801229
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General Streams – Output from PNNL/ORNL Report
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Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

• Decommissioning and Decontamination (D&D)
• Metal
• Off-gas
• Operating
• Carbon
• Spent salt
• Separated salt

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Salt Streams: Challenges & 
Questions

13

• Halide immobilization is complicated
• 36Cl and 129I dose drivers for repository 

(require fractional release rates of 
ppm/year)

• Halogen impact on disposal site
• High doses from insanely short cooling
• Salt storage/transportation (radiolysis, 

dispersibility) 
• Uncertain stream compositions and 

characteristics
• Isotopically enriched 37Cl and 7Li

– Methods for enrichment
– Costs of enrichment (favor recycle)
– Methods for capture/recycle
– Additional wastes produced?

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

intermediate | product

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Reactor Off-Gas Streams: 
Challenges/Questions

14

• Current U.S. regulations require 85Kr 
capture and storage

– 85Kr gas storage is point source, high rad, 
high pressure, corrosive daughters

– 85Kr immobilization is expensive, low 
loading

• Acid gas capture in inert gas 
• Salt mist/entrainment
• High-dose streams require holdup 

for decay (e.g., Xe)
• Recycle He back into the reactor
• Need to deal with 3H partitioning and 

transportation (permeation through 
metallic reactor components)

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

intermediate | product

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Metal and Carbon Streams: 
Challenges/Questions

15

• Salt impregnation
• Deep penetration of radionuclides at equipment 

end of life 
• High dose (from salt, gas penetration)
• Large portion could be GTCC*/HLW* due to 

activation products and embedded actinide salts
• Treatment options are challenging (metals) or 

impractical (graphite)
• Untreated durabilities questionable to poor 

(both graphite and many metals)
• Graphite recycle options might be plausible 

(next slide)

Source: https://doi.org/10.1016/j.jnucmat.2013.05.043

5-metal (Mo+Pd+Rh+Ru+Tc) epsilon phase 

GTCC*: greater than class C
HLW*: high-level waste

Crum et al. (2016)

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

intermediate | product

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Potential for Carbon Recycle

16

• It is possible to recycle used graphite 
moderators from MSRs

• This could significantly reduce the carbon 
waste from graphite moderators

• Graphite will likely be very radioactive, 
complicating handling

• Eventually, at reactor end-of-life, it would have 
to be disposed

Burchell and Pappano 
(ORNL/TM-2010/00169)

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

intermediate | product

https://doi.org/10.1016/j.nucengdes.2019.02.002
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D&D and Operating Wastes: 
Challenges/Questions

17

• Potentially high doses (significant fractions GTCC)
• Potential for mixed LLW and mixed GTCC
• High volumes/masses
• Uncertain characteristics and amounts (mixed wastes?)
• Salt contaminated wastes challenge to dispose

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002intermediate | product

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Primary Gaps Identified – Proposed Next Steps
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• Need more information on mass balances and compositions of expected wastes
• Need to develop initial functional and operational requirements (FOR) for MSR wastes
• Initiate off-gas treatment technology testing
• Investigate waste form options for salt-based waste streams
• Evaluate treatment options of contaminated carbon-based materials (i.e., graphite)
------------------------------------------------
• Some of this work is already being done through the US Department of Energy Office of Nuclear 

Energy (DOE-NE) Campaigns including:
– Material Recovery and Waste Form Development (MRWFD) (NE-4)
– Molten Salt Reactor (MSR) (NE-5)

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

https://doi.org/10.1016/j.nucengdes.2019.02.002
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OFF-GAS TREATMENT &
MONITORING EXAMPLES
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Molten Hydroxide Scrubber
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• Potential non-aqueous scrubber option to remove halides, particulates, mists, and 
aerosols from process gas stream

• Would include delay bed for high-activity noble gases (e.g., neutronics poisons)
• Purge gas could be cleaned and sent back to the reactor

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

Concept by Bill Del Cul (ORNL)

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Iodine Capture and Immobilization

21

• Solid sorbent systems utilizing chemisorption
– Metal-impregnated zeolites for iodine (e.g., Ag, Bi, Cu)
– Metal-impregnated silica-based gels (e.g., Ag, Bi, Cu)

• Fate after capture – they can be hot pressed into waste forms

HIPed I-loaded AgZ (mordenite)

Work by: 
Bruffey (ORNL)

SPS I-loaded Ag0-aerogel

Work by: 
Matyas, et al. (PNNL)

HIPed I-loaded sodalite

Work by: 
Chong, et al. (PNNL) | Bruffey (ORNL)

HIP = hot isostatic pressing; SPS = spark plasma sintering

Source: https://doi.org/10.1016/j.jnucmat.2020.152222 Source: ISBN: 978-1-53617-250-8 (page 259)

https://doi.org/10.1016/j.jnucmat.2020.152222
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Source: https://pubs.acs.org/doi/10.1021/ar5003126

Noble Gas Capture

22

• Metal-Organic Frameworks (MOFs) can be used to separate Xe and Kr
– Many MOFs have high Xe/Kr selectivities (>10×); very few have Kr/Xe selectivities
– Separate MOFs can be used to pull out Xe in bed-1 followed by Kr in bed-2

• Cryogenic distillation can also be used for noble gas capture

Source: https://doi.org/10.1016/j.chempr.2017.12.025

Work led by: Thallapally et al. (PNNL)

Banerjee, et al. (2015)

Banerjee, et al. (2018) Riley, et al. (2020)

Source: https://dx.doi.org/10.1021/acsami.0c13717

Engineered forms

https://pubs.acs.org/doi/10.1021/ar5003126
https://doi.org/10.1016/j.chempr.2017.12.025
https://dx.doi.org/10.1021/acsami.0c13717
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In-Situ Off-Gas Monitoring
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• Online monitoring can be used to track the species and 
concentrations in the off-gas streams

• Spectroscopic tools include
– Raman
– UV-VIS-NIR – ultraviolet-visible-near infrared
– LIBS – laser-induced breakdown spectroscopy

• Analysis in gas phase, liquid phase, molten salt, etc.
• Species include I2(g), ICl, Xe, and hydrogen isotopes

Work led by:
Lines, Bryan, et al. (PNNL)
McFarlane, Andrews, Myhre, et al. (ORNL)

Probe

Process stream

405 nm     532 nm      671 nm

Sources: 
https://doi.org/10.1021/acs.est.0c06137
https://doi.org/10.1117/12.2557555
https://doi.org/10.1021/acs.jpca.0c07353 ph

as
es

https://doi.org/10.1021/acs.est.0c06137
https://doi.org/10.1117/12.2557555
https://doi.org/10.1021/acs.jpca.0c07353
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WASTE FORM EXAMPLES

24
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Waste Form Definitions

• Dehalogenation – halides are removed, salt cations are converted to another form (e.g., oxides, 
phosphates)

• Waste loading (WL) – mass fraction of waste in the waste form
1) Full salt – direct immobilization of entire salt
2) Salt cation loading – normalized parameter to compare waste forms on this basis despite 

how they are processed 
3) Salt cation oxide loading – mass of salt cation oxides in WF

• Storage volume – volume of final waste form required to immobilize starting salt mass
• Density – mass/volume; this affects storage volume of final waste form; effected by porosity
• Porosity – open/closed voids; some waste forms have porosity (e.g., GBS-CWF) 
• Chemical durability – leach rate(s) in standardized accelerated leaching tests (e.g., PCT, C1308)

25
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Waste Form Types

• Single-phase waste forms – glass or crystalline material (e.g., REPO4)
• Multi-phase waste forms – cermet (ceramic-metal), halmet (halide-metal), 

glass-bonded ceramic (e.g., glass-bonded sodalite), glass ceramic

Work by:
Riley, Vienna, Crum, et al. (PNNL)
Ebert (ANL), Frank (INL); DelCul (ORNL)

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

Source: https://dx.doi.org/10.1021/acs.iecr.0c01357

apatite/powellitesodalitecrystals in copper

https://doi.org/10.1016/j.nucengdes.2019.02.002
https://dx.doi.org/10.1021/acs.iecr.0c01357
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Types of Applicable Crystalline Matrices
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More information provided and original references provided here: 
https://doi.org/10.1016/j.nucengdes.2019.02.002

Mineral Name Halides Alkalis Alkaline Earths Rare Earths Actinides Reference(s)

Apatite

AE-RE Apatite F – Be→Ba RE – Ewing (1999)

Fluorapatite F – Ca – – Lu et al. (2013)

BeF-apatite F Na Be – – Engel and Fischer (1990)

LiF-BeF2 apatite F Li Be, Ca – – Lexa (1999)

Chlorapatite Cl – Ca – – Lu et al. (2013)

Iodoapatite I – Ca – – Cao et al. (2017)

Perovskite
Sn-Cl perovskite Cl Cs – RE An Scott et al. (2018)

Ca-Ti Perovskite – – L L L Vance et al. 2006)

Phosphate

Spodiosite Cl, F – Ca – – Donald (2010)

RE-Monazite – – – RE – Boatner et al. (1980)

An-Monazite – – – – An Van Emden et al. (1997)

Xenotime – – – RE An Van Emden et al. (1997)

Sodalite

Chlorosodalite Cl Li→K - – – Riley et al. (2017)

Wadalite Cl – Ca – – Mihajlovic et al. (2004)

Iodosodalite I Na - – – Chong et al. (2017)

Nesosilicate Rondorfite Cl – Ca, Mg – – Mihajlovic et al. (2004)

Cancrinite Quadridavyne Cl Na, K Ca – – Bonaccrsi et al. (1994)

Titanate

Zirconolite – – L L L Vance et al. (2006)

Perovskite – – L L L Vance et al. (2006)

Hollandite – L L L L Vance et al. (2006)

• “L” denotes that species could likely 
be incorporated (but not necessarily 
documented yet) 

• “–” denotes that these species are 
unlikely to incorporate

• Primary issue is that salt must meet 
target stoichiometry of the crystal or 
additional reagents are needed

https://doi.org/10.1016/j.nucengdes.2019.02.002
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Waste Form (WF) Graphical Representations 
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Source: https://doi.org/10.1080/09506608.2020.1801229

storage volume and waste loading different ways to think about WL

Goals: maximize waste loading and minimize WF volume

https://doi.org/10.1080/09506608.2020.1801229
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Options for Partitioning to Remove Different Salt Components

29

• Full salt immobilization
• Salt partitioning options
• Immobilization of separate partitions

Source: https://dx.doi.org/10.1021/acs.iecr.0c01357

https://dx.doi.org/10.1021/acs.iecr.0c01357
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Glass-Bonded Sodalite Ceramic Waste Form (GBS-CWF)

30

• Made from salt (no pre-partitioning of the salt), zeolite 4A, & glass binder
• Contains some porosity due to pressureless sintering process used for 

synthesis

Source: https://doi.org/10.1007/s00269-020-01124-4Source: http://dx.doi.org/10.1016/j.jnucmat.2017.03.041
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different binders, binder loadings, and salt loadings

https://doi.org/10.1007/s00269-020-01124-4
http://dx.doi.org/10.1016/j.jnucmat.2017.03.041
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Iron Phosphate Waste Forms
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• Salt is dehalogenated prior to WF fabrication
• Phase distribution upon slow-cooling is complex
• Low release rates during durability experiments

Source: https://doi.org/10.1016/j.jnoncrysol.2021.121319

Source: https://doi.org/10.1016/j.jnucmat.2019.151949

CCC-cooled sample with ERV2 
(Echem salt simulant)

Quenched DPF WFs

Modified from original:
https://doi.org/10.1016/j.jnucmat.2019.151949

https://doi.org/10.1016/j.jnoncrysol.2021.121319
https://doi.org/10.1016/j.jnucmat.2019.151949
https://doi.org/10.1016/j.jnucmat.2019.151949
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Iron Phosphate Waste Forms 
(continued)

32Source: https://doi.org/10.1021/acsomega.1c05065

PNNL Dechlorination System

• Five-zone furnace
• Cl is removed and collected as NH4Cl 

in the off-gas system
• It is likely that this process could be 

used for defluorination of fluoride-salts

https://doi.org/10.1021/acsomega.1c05065
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Ultrastable H-Y Zeolite Process (Dechlorination)

33

• Developed by Simpson, Bagri, Wasnik (Univ. Utah) and Carlson (UNR)
• Chloride salts are reacted with H-Y zeolite, Cl reacts with H to produce HCl, resulting 

product is immobilized in glass-bonded waste form
• Reaction times of 120 hours at 625°C estimated to yield 99% dechlorination

Source: https://pubs.acs.org/doi/10.1021/acs.iecr.9b02577

USHY zeolite particulates
(45-90 µm)

USHYZ Si/Al molar ratio = 2.6

Source: https://doi.org/10.1016/j.jnucmat.2020.152753

Wasnik, et al. (2019) Gardner, et al. (2021)

Dehalogenated particles Fired pellets of products

https://pubs.acs.org/doi/10.1021/acs.iecr.9b02577
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Tellurite Glass – A Potential Full Salt Option

34

• Most of the work at PNNL in this area has 
revolved around the 78%TeO2-22%PbO 
(mass) glass system for different salt 
compositions:
– KCl-LiCl + FPs
– LiCl-Li2O + FPs
– RECl3
– REOCl
– SrCl2

• High-LiCl glasses show poor durability
• High-RE glasses show good durability
• Glasses are expensive to make 

(high cost of TeO2)

RE = rare earth; FP = fission product(s)

Sources: 
http://dx.doi.org/10.1016/j.jnucmat.2017.08.037
https://dx.doi.org/10.1021/acs.iecr.0c01357

http://dx.doi.org/10.1016/j.jnucmat.2017.08.037
https://dx.doi.org/10.1021/acs.iecr.0c01357
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Tellurite Glass – Full Salt Option

35Source: http://dx.doi.org/10.1016/j.jnucmat.2017.08.037

Most work done at 
78/22 TeO2/PbO comp.

Phase separation at 
higher salt loadings

Leached layer increasing with time

optical
SEM

TEM
SAD

http://dx.doi.org/10.1016/j.jnucmat.2017.08.037
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Fluoride Salt Waste Forms –
Glass-Bonded CaF2

• FLiNaK salt mixed with fission product 
simulant (alkali and alkaline earth 
nitrates, Sb2O3, MoO3)

• Salt added to H3BO3, Al(NO3)3, 
Ca(OH)2, and colloidal silica

• Mixed/heated to dry at 110°C and 
dried powder was calcined at 600°C

• Calcined powder was milled
• This product was cold pressed and 

sintered or processed with a hot 
isostatic press (HIP)

• Product has good chemical durability 

36Source: https://doi.org/10.1111/jace.17293

Work by:
Gregg, Vance, et al. (ANSTO)

• Most of the F partitions to CaF2
• Some is left in the glass phase
• Fluoride loadings up to 7.2 mass% demonstrated
• Full waste loadings of 17-21 mass% achieved

HIP canister before 
and after heating

https://doi.org/10.1111/jace.17293
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OTHER CONSIDERATIONS

37
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Options for 37Cl Recycle

38

• 37Cl recycle is important to prevent 
neutron activation of natural 35Cl to 
36Cl (t1/2 = 3×105 years)

• Cl can be removed from Cl-based 
salts using dechlorination processes

–Reactions with ammonium phosphates 
(e.g., ADP, DHP) [↑NH4Cl]

–Reactions with H3PO4 [↑HCl]
–Reactions with USHY zeolite  [↑HCl]

ADP = NH4H2PO4
DHP = (NH4)2HPO4
USHY zeolite = ultrastable H-Y zeolite

Chart of the nuclides
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Minimizing Tritium Production

39

• Tritium can be produced through activation of 6Li or 19F
• This can be reduced by using 7Li-enriched salts

Source: https://doi.org/10.1016/j.nucengdes.2019.02.002

https://doi.org/10.1016/j.nucengdes.2019.02.002


GEN IV International Forum

Technology Readiness Levels (TRLs)

40

• Most waste form technologies have low TRL 
values

• Most are only conducted at small-scale with 
nonradiological salt compositions

• More work is needed to further these 
technologies towards higher TRLs

• Some TRL jumps are extremely expensive
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SUMMARY AND CONCLUSIONS

41
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Summary and Conclusions

42

• High-level takeaway: the waste problem is solvable…
• Starting points exist for technology development in all these topic areas
• Several waste form options exist for most waste streams, but most are at low 

TRLs
• Options demonstrated for Cl-based salts might work for F-based salts
• Some WF and salt treatment options are better than others 

(e.g., cost, waste loading, storage volume, simple vs multiple process steps)
• Several opportunities exist for research in development in each of these areas
• Potential for component recycle (e.g., 37Cl, 7Li, graphite)
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Upcoming Webinars

Date Title Presenter
27 July 2022 A Gas Cherenkov Muon Spectrometer for 

Nuclear Security Applications
Mr. Junghyun Bae, Purdue 
University, USA

31 August 2022 China's Multi-purpose SMR—ACP100 
Design and Project Progress

Dr. Danrong Song, Nuclear 
Power Institute of China, China

28 September 2022 Development of In-Service Inspection 
Rules for Sodium-Cooled Fast Reactors 
Using the System Based Code Concept

Dr. Shigeru Takaya, JAEA, Japan
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